JURNAL GRADASI TEKNIK SIPIL

P-ISSN NO. 2598-9758 E-ISSN NO. 2598-8581

VOL. 5, NO. 1, JUNI 2021

Diterbitkan oleh Pusat Penelitian dan Pengabdian Kepada Masyarakat Politeknik Negeri Banjarmasin bekerjasama dengan Jurusan Teknik Sipil - Politeknik Negeri Banjarmasin

POLITEKNIK NEGERI BANJARMASIN

Jurnal Gradasi Teknik Sipil diterbitkan oleh Pusat Penelitian dan Pengabdian Kepada Masyarakat Politeknik Negeri Banjarmasin. Ruang lingkup makalah meliputi Bidang Teknik dan Manajemen dengan konsentrasi Bidang Transportasi, Geoteknik, Struktur, Keairan dan Manajemen Konstruksi. Isi makalah dapat berupa penyajian isu aktual di bidang Teknik Sipil, review terhadap perkembangan penelitian, pemaparan hasil penelitian, dan pengembangan metode, aplikasi, dan prosedur di bidang Teknik Sipil. Makalah ditulis mengikuti panduan penulisan.

Penanggung Jawab

Nurmahaludin, ST, MT.

Dewan Redaksi

Ketua : Dr. Fitriani Hayati, ST, M.Si. Anggota : Riska Hawinuti, ST, MT.

Nurfitriah, S.Pd, MA. Kartini, S.T, M.T Mitra Yadiannur, M.Pd

Reviewer

Dr. Ir. Yanuar Jarwadi Purwanto, MS. (Institut Pertanian Bogor)

Dr. Ir. M. Azhar, M. Sc. (Institut Sains dan Teknologi Nasional)

Dr. Ir. Endang Widjajanti, MT. (Institut Sains dan Teknologi Nasional)

Joni Irawan, ST, MT. (Politeknik Negeri Banjarmasin)

Yusti Yudiawati, ST, MT. (Politeknik Negeri Banjarmasin)

Dr. Astuti Masdar, ST, MT. (Sekolah Tinggi Teknologi Payukumbuh)

Editing dan Tata Bahasa

Nurfitriah, S.Pd., MA.

Desain dan Tata Letak

Abdul Hafizh Ihsani

Alamat Redaksi

Jurusan Gradasi Teknik Sipil Politeknik Negeri Banjarmasin, Jl. Brigjen H. Hasan Basri 70123 Banjarmasin Telp/Fax 0511-3307757; Email: gradasi.tekniksipil@poliban.ac.id

JURNAL GRADASI TEKNIK SIPIL

DAFTAR ISI

	Halaman
PERBANDINGAN ANGGARAN BIAYA (RAB) PELAT LANTAI KONVENSIONAL DENGAN PELAT LANTAI KOMPOSIT (BONDEK) Aunur Rafik, Sahlan Hadi, Rinova Firman Cahyani	1-12
EVALUASI PEMODELAN BANJIR 2-D KOTA MANADO Aris Rinaldi, Dasniari Pohan, Idham Riyando Moe, Reza Adhi Fajar	13-21
REVIEW DESAIN PERKERASAN JALAN RAY III KABUPATEN PULANG PISAU PROVINSI KALIMANTAN TENGAH Khamidi Ilhami, Hadi Gunawan	22-27
PERBANDINGAN BIAYA DAN WAKTU PEKERJAAN DRAINASE ANTARA METODE <i>PRECAST</i> DAN <i>CAST IN SITU</i> <i>Ruspiansyah, Adi Maryanto</i>	28-38
ANALISA PENGEMBANGAN LAHAN PERTANIAN BERDASARKAN NERACA AIR PADA POLDER LIANG MENGGUNAKAN DEBIT ALIRAN PERMUKAAN DENGAN METODE NRECA Fakhrurrazi, M. Fahrudin	39-44
PENGARUH PEMAKAIAN PLASTIK LDPE SEBAGAI SUBSTITUSI ASPAL TERHADAP KARAKTERISTIK MARSHALL HRS-WC Ardi Wivogo, Andi Svaiful Amal, Alik Ansvori Alamsvah	45-52

ANALISA PENGEMBANGAN LAHAN PERTANIAN BERDASARKAN NERACA AIR PADA POLDER LIANG MENGGUNAKAN DEBIT ALIRAN PERMUKAAN DENGAN METODE NRECA

Fakhrurazi¹, M. Fahrudin²

1.2 Jurusan Teknik Sipil, Politeknik Negeri Banjarmasin, Indonesia
e-mail: *1 fakhrurrazi@poliban.ac.id (corresponding author)

Abstrak

Polder Liang terletak di sebelah barat kota Martapura di desa Tambak Baru Kabupaten Banjar, Provinsi Kalimantan Selatan. Luas polder lebih dari 900 Ha dikelilingi jalan sebagai tanggul Polder Liang berada di tiga kecamatan yaitu Kecamatan Martapura, Karang Intan dan Astambul. Polder liang memiliki beberapa pintu air yaitu 6 pintu air utama dan 29 pintu air kecil. Sistem pintu air yang ada di sekitar polder masih manual.

Perhitungan debit aliran permukaan menggunakan metode Nreca untuk selanjutnya menghitung debit andalan (ketersediaan air) pada polder liang. Metode Penman digunakan untuk menghitung evapotransiprasi dan dipakai pada metode Nreca. Perhitungan kebutuhan air berdasarkan KP-01. Dalam menghitung pengembangan lahan pertanian berdasarkan neraca air.

Hasil perhitungan kebutuhan air yang ada di desa Tambak Baru Kabupaten Banjar, kebutuhan air tertinggi dengan awal tanam bulan Juni II (16 Juni) berjumlah dengan rata-rata 0,442 m³/detik. ketersedian air dihitung dengan debit andalan 80% didapat rata-rata ketersedian air 31,095 m³/detik. Perhitungan neraca air yang ada di petak sawah pada awal tanam bulan Juni II 5,384 m³/detik. Perhitungan perkembangan lahan yang awalnya tercatat 638 Ha bisa di kembangkan menjadi 845 Ha.

Kata Kunci: Ketersediaan, Kebutuhan, dan Neraca Air

Abstract

Polder Liang is located west of the city of Martapura in the village of Tambak Baru, Banjar Regency, South Kalimantan Province. The polder has an area of more than 900 hectares and is surrounded by roads as embankments, and is located in three sub-districts, namely Martapura, Karang Intan and Astambu District. Polder Liang has several sluices, namely 6 main floodgates and 29 small sluices. The sluice system around the polder is still manual.

The surface flow rate calculation used Nreca method to further calculate the mainstay discharge (water availability) in the polder hole. Penman method was used to calculate evapotransipration and was used in the Nreca method. Calculation of water requirements was based on KP-01. The calculation of the development of agricultural land was based on the water balance.

The results of the calculation of existing water needs in the Tambak Baru village, Banjar district, show that the highest water needs with the beginning of planting in June II (June 16) amounted to an average of 0.442 m3 / second. The water availability was calculated with a reliable discharge of 80%, and the average water availability was 31.095 m3 / second. The calculation of the water balance in the rice fields at the beginning of planting in June II was 5,384 m3 / second. The calculation of land development, which was originally recorded as 638 hectares, can be expanded to 845 hectares.

Keywords: Availability, Needs, and Water Balance

I. PENDAHULUAN

Polder Liang terletak di sebelah barat kota Martapura di Desa Tambak Baru Kabupaten Banjar, Provinsi Kalimantan Selatan. Luas polder lebih dari 900 Ha dikelilingi jalan sebagai tanggul polder liang berada di tiga kecamatan yaitu Kecamatan Matapura, Karang Intan, Astambul. Adapun sungai yang ada di sekitaran polder liang adalah Sungai Arpat, liang, Antasan, Bincau Antasan ambawang besar, dan Sungai Baku. Polder adalah sebidang tanah yang rendah, dikelilingi oleh tanggul yang membentuk mengelilingi polder yang berarti tidak ada air yang bisa masuk dari daerah luar selain yang dialirkan melalui perangkat manual.

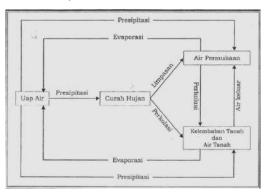
Polder Liang memiliki beberapa pintu air yaitu 6 pintu air utama dan 29 pintu air kecil. Sistem pintu air yang ada di sekitaran polder masih bersifat manual. Ada juga pintu yang tidak difungsikan lagi namun sifhonnya masih bisa digunakan. Pintu air di polder hasil pembuatan di zaman Belanda.

Masyarakat yang ada di sekitar polder Liang mata pencahariannya sebagai petani. Hal ini bisa dilihat dengan adanya tanaman padi yang ada di sekitar polder. Namun masyarakat yang bertanam ada vang mendapatkan kendala dikarenakan meraka menggunakan tanaman padi dengan jenis khusus, padinya harus yang berbatang tinggi agar tanaman padi tidak tenggelam karena air di depan polder cukup tinggi, seandainya muka air lebih tinggi dan padi terendam akibatnya bisa menimbulkan gagal panen, tanaman padi akan layu karena kelebihan kadar air. Oleh sebab itu Polder Liang harus ditanam padi unggul agar tanaman bisa dipanen. Pekerjaan lain yang ada disekitaran polder Liang adalah berternak.

II. TINJAUAN PUSTAKA

1. Daerah Aliran Sungai (DAS)

Daerah Aliran Sungai (DAS) adalah suatu permukaan lahan yang mana punggung-punggung gunung menjadi pembatas, sehingga apabila air hujan jatuh pada permukaan lahan tersebut maka akan mengalir menuju sungai utama. Pada peta topografi DAS dilengkapi oleh garis-garis kontur(Triatmodjo 2008). Garis-garis kontur berperan penting dalam penentuan arah limpasan permukaan (run off). Limpasan bergerak tegak lurus terhadap garis-garis kontur dari titik tertinggi menuju terendah. Suatu DAS dibatasi dan dikelilingi oleh titik-titik tertinggi. Air hujan yang mengalir menuju sungai utama yang ditinjau berasal dari hujan yang jatuh didaerah DAS, sedangkan yang jatuh diluar Kawasan DAS akan mengalir kesungai sebelahnya (Triatmodjo 2008).


2. Siklus Hidrologi

Dibumi terdapat kira-kira sejumlah 1,3-1,4 milyar km³ air: 97,55% adalah air laut, 1,75% berbentuk es dan

0,73% berada di daratan sebagai air sungai, air danu, air tanah dan sebagainya. Hanya 0,001 % berbentuk uap di udara. Air vang ada dibumi terus menerus mengalami sirkulasi, penguapan, presipitasi dan pengaliran keluar (outflow). Sebagian air hujan yang tiba kepermukaan tanah akan masuk kedalam tanah (infiltrasi). Bagian lain yang berlebihan akan mengisi lekuk-lekuk permukaan tanah, kemudian akan mengalir ke daerah yang lebih rendah, masuk kesungai dan akhirnya sampai kelaut. Tidak semua butiran air yang sampai ke laut. Dalam perjalananya ada sebagian menguap dan kembali ke udara (Sosrodarsono, 1978). Jadi sungai mengumpulkan tiga jenis limpasan, yakni limpasan permukaan (surface runoff), aliran intra (interflow) dan limpasan air tanah (groundwater runoff) yang pada akhirnya kembali ke laut. Singkatnya air dari laut di hembus keatas daratan (kecuali sebagian jatuh langsung kesungai dan mengalir kelaut).

3. Water Balance

Dalam siklus hidrologi, dijelaskan mengenai situasi water balanceantara aliran kedalam (inflow) dan aliran keluar (outflow) di suatu tempat untuk satu periode tertentu dinamakan neraca air atau keseimbangan air (water balance).

Gambar 1. Siklus Air

4. Kebutuhan Air di Sawah untuk Padi

Kebutuhan air di sawah untuk padi ditentukan oleh beberapa faktor yaitu:

- 1. Penyiapan lahan
- 2. Penggunaan konsumtif
- 3. Perkolasi dan rembesan
- 4. Pergantian lapisan air
- 5. Curah hujan efektif

Kebutuhan air yang berada di sawah mancakup 1 sampai 4. Kebutuhan bersih air disawah (NFR) juga memperhitungkan curah hujan efektif. Kebutuhan air di sawah dinyatakan dalam mm/hari atau 1/dt, tidak disediakan kelonggaran untuk efesiensi irigasi di jaringan tersier dan utama. Efesiensi juga untuk

memperhitungkan kebutuhan pengambilan yang ada di $irigasi(m^3/dt)$

5. Penyiapan lahan untuk padi

Lahan pada umumnya sangat membutuhkan air menentukan kebutuhan maksimum air irigasi pada suatu proyek irigasi. Ada beberapa faktor penting yang menentukan besarnya kebutuhan air agar lahan bisa digunakan untuk penyiapan adalah:

- a. Membutuhkan waktu cukup lama agar pekerjaan penyiapan lahan maksimal
- b. Jumlah air yang diperlukan untuk penyiapan lahan Beberapa faktor penting menentukan lamanya penyiapan lahan:
- 1. Tersedianya tenaga kerja yang cukup
- Perlu memanajemen waktu agar waktu tersedia untuk menanam padi sawah atau ladang kedua

Faktor tersebut saling berkaitan. Kondisi di lokasi penanaman padi akan mempengaruhi berapa lama waktu yang diperlukan untuk penyiapan lahan. Untuk lokasi proyek baru, jangka waktu penyiapan lahan akan dilakukan berdasarkan kebiasaan yang berlaku di tempat tersebut. Sebagai pedoman diambil jangka waktu 1,5 bulan untuk menyelesaikan penyiapan lahan disaluran petak tersier. Untuk penyiapan lahan diperkirakan akan dipakai peralatan mesin secara luas maka dari itu jangka waktu penyiapan lahan akan diambil sekitar satu bulan. Perlu diingat bahwa pemindahan bibit ke sawah mungkin dimulai setelah 3 sampai 4 minggu di beberapa bagian petak tersier dimana pengelolaan yang dilakukan sudah selesai.

c. Kebutuhan air untuk penyiapan lahan Kebutuhan air disawah pada umumnya jumlah air yang diperlukan untuk penyiapan lahan bisa ditentukan berdasarkan dalamnya prioritas tanah. Rumus ini digunakan untuk memperkirakan kebutuhan air untuk penyiapan lahan (KP-01):

$$PW = \frac{(S_a - S_b)N.d}{1^4} + P + F \dots (2.1)$$

Dimana:

PWR = kebutuhan air untuk penyiapan lahan, mm

 S_a = derajat kejenuhan tanah setelah penyiapan lahan dimulai, %

S_b=derajat kejenuhan tanah sebelum penyiapan lahan dimulai %

N= porositas tanah dalam, % pada harga rata rata untuk kedalaman tanah

d = asumsi kedalaman tanah setelah pekerjaan penyiapan lahan,mm

pd = kedalaman genangan setelah pekerjaan penyiapan lahan, mm

FI = kehilangan air disawah selama 1 hari, mm.

d. Kebutuhan air selama menyiapkan lahan

Untuk mengetahui kebutuhan irigasi perlu diperhitungkan selama penyiapan lahan, menggunakan metode yang dibuat oleh Van de Goor dan Zijlstra (1968) metode yang diciptakannya didasarkan pada kecepatan air konstan dalam 1/dt selama periode penyiapan lahan dan rumus yang dihasilkan:

$$IR = Me^{K}/(e^{K}-1)....(2.2)$$

Dimana:

IR = kebutuhan air irigasi di tingkat persawahan, mm/hari

M = kebutuhan air untuk mengganti atau mengkompensasi kehilangan air

Evaporasi dan perkolasi di sawah yang sudah dijenuhkan

 $M = E_o + P$, mm/hari

 E_o = evaporasi air yang terbuka yang diambil 1.1 ET_o salam lahan disiapkan mm/hari

K = MT/S

T = jangka waktu penyiapan lahan, hari

S = kebutuhan air, untuk penjenuhan ditambah dengan lapisan air 50 mm, mm yakni 200 + 50 = 250 mm seperti yang sudah diterangkan diatas.

6. Penggunaan konsumtif

Rumus pengguanaan konsumtif diuraikan sebagai berikut (KP-01):

 $ETc = kc \times ETo$

Dimana:

ETc = Evapotranspirasi tanaman, mm/hari

ETo = evapotranspirasi tanaman acuan, mm/hari

Kc = Koefisien tanaman

a. Evapotranspirasi

Evapotranspirasi tanaman acuan adalah evapotranspirasi tanaman yang dijadikan acuan yakni rerumputan yang pendek ET_o adalah situasi evaporasi berdasarkan kenyataan meteorologi seperti:

- 1. Temperatur (suhu)
- 2. Sinar matahari
- 3. Kelembaban
- 4. Kecepatan angin

b. Perkolasi

Laju perkolasi pada sifat-sifat tanah sangat membutuhkan. Pada tanah-tanah lempung berat dengan karakteristik pengelolahan yang baik, lajunya perkolasi dapat mencapai 1-3 mm/hari. Pada tanah tanah yang lebih ringan, laju perkolasi biasa lebih tinngi. Dari hasilhasil penelitian yang telah dilakukan tanah pertanian dan penyelidikan kelulusan, besarnya laju perkolasi serta tanah harus diketahui tingkat cocok atau tidaknyanuntuk dapat di tetapkan pengelolaan tanah dan dianjurkan pemakainya, agar bisa menentukan laju perkolasi, tinngi muka air tanah harus kita ketahui atau kita perhitungkan.

Membesaran biasanya terjadi akibat mresapnya air melalui tanggul sawah.

Pengantian lapisan air

Setelah setelah pemupukan, untuk menjadwalkan dan mengganti lapisan air. Jika tidak ada jadwalnya, bisa dilakukan penggantian sebanyak 2 kali, masing-masing 50 mm (atau 3.3 mm/hari selama ½ bulan) selama sebulan dan dua bulan setelah transplantasi.

Curah hujan efektif

Untuk irigasi padi curMah hujan efektif bulanan bisa diambil 70% dari curah hujan tengah bulanan dengan periode 5 tahun (KP-01):

$$R_e = 0.7 x \frac{1}{1} R (s_1 \quad h \dot{b} \quad)_5...(2.3)$$

Dimana:

R_e = curah hujan efektif, mm/hari

R (setengah bulan)₅ = curah hujan minimum tengah bulanan dengan periode ulang 5 tahun/mm di daerahdaerah yang besar dimana tersedia data-data curah hujan harian, harus kita pertimbangkan terlebih dahulu untuk diadakan studi simulasi untuk penghasilan kriteria yang lebih terinci.

7. Metode NRECA

Perkiraan kuantitatif sumber daya air didasarkan pada data hidrologi dan meteorologi yang merupakan inti dari nilai semua studi, rencana bangunan dan konstruksi dari pengenmbangan suatu wilayah sungai. Untuk menganalisa suatu sistem tata air di tingkat wilayah maka yang pertama di lakukan adalah Analisa ketersedian air (Panduan Perencanaan Bendungan Urugan, Volume II, Departemen Pekerjaan Umum, 1999).

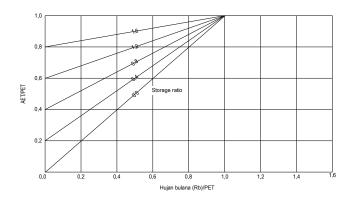
Langkah perhitungan metode NRECA

- 1. Nama bulan januari desember
- 2. Nilai hujan rata-rata bulanan (Rb) yang dihitung dengan rumus sebagai berikut untuk bulan januari

$$R_{Jan} = 1/n \sum (R_{jan})_{i} \qquad (2.4)$$

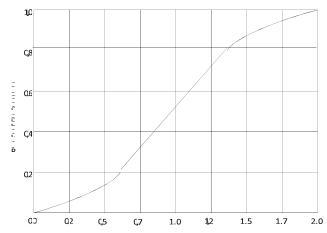
 $(R_{jan})I =_{\text{hujan rata rata bulan januari di pos -i}}$ (mm/bln)

n = jumlah pos hujan.


- 3. Nilai penguapan peluh potensial evapotranspirasi
- 4. Nilai tampungan kelengasan awal (Wo). Nilai ini haru dicoba coba dan percobaan pertama diambil 500 (mm/bulan) dibulan januari. $W_i = \frac{Wo}{Nominal}......(2.5)$ $Nominal = 100 + 0.2 R_a$

$$W_i = \frac{wo}{Nominal} \dots (2.5)$$

 R_a = hujan tahunan (mm)


- 6. Ratio Rb /PET = kolom (2):kolom(3)
- 7. Ratio AET / PET

AET = penguapan peluh aktual dapat dilihat dari Gambar 2, nilainya tergantung dari ratio Rb / PET (kolom 6) dan Wi (kolom 5)

Gambar 2 Ratio AET/PET

- **AET** = (AET/PET) x PET x koefisien reduksi = kolom (7) x kolom (3) x koefisien reduksi
- Neraca air = Rb AET = kolom(2) kolom(8)
- 10. Ratio kelebihan kelengasan (excess moisture yang bisa diperoleh sebagai berikut:
 - (i).Bila neraca air (kolom 9) positif, maka rasio tersebut bisa di peroleh dari Gambar 3dengan cara memasukan nilai tampungan kelengasan tanah (Wi) dikolom 5
 - (ii). Bila neraca air negatif, ratio = 0

Gambar 3 Rasio Tampungan Kelengasan Tanah

- 11. Kelebihan kelengasan
 - = ratio kelengasan x neraca air
 - = kolom (10) x kolom (9)
- 12. Perubahan tampungan
 - = Neraca kelebihan kelengasan
 - = kolom (9)- kolom (11)
- 13. Tampungan air tanah
 - = P1 x kelebihan kelengasan
 - $= P1 \times kolom (11)$

P1=parameter yang mengambarkan karakteristik tanah permukaan (kedalaman antara 0-2m), nilainya 0.1 - 0.5 tergantung sifat airnya yang ada dilahan P1 = 0.1 bila bersifat kedap air

- 14. Tampungan air tanah yang ada diawal yang harus dicoba coba dengan nilai awal = 2
- 15. Tampungan air tanah akhir
 - = tampungan air tanah + tampungan tanah awal = kolom (13) + kolom (14)
- 16. Aliran air tanah
 - = P2 x tampungan air tanh akhir
 - $= P2 \times kolom (15)$
 - P2 = parameter seperti P1 tetapi untuk lapisan tanah dalam(kedalaman 2-10 m)
 - P2 = 0,9 bila bersifat kedap air
 - P2 = 0.5 bila bersifat lulus air
 - 17. Aliran langsung
 - = kelebihan kelengasan tampungan air tanah
 - = kolom (11) kolom (13)
- 18. Aliran Total = aliran langsung + aliran air tanah
 - = kolom (17) + kolom (16), mm/bulan
- 19. Dalam m^3 /bulan = kolom (18) dalam mm x 10 x luas daerah tadah hujan (ha) untuk perhitungan bulan berikutnya:
 - 1) Tampungan kelengasan = tampungan kelengesan bulan sebelumnya + perubahan tambungan = kolom (4) + kolom (12), semua dari bulan sebelumnya.
 - 2) Tampungan air tanah = tampungan air tanah bulan sebelumnya aliran air tanah = kolom (15) kolom (16), semuanya dari bulan sebelumnya.

Sebagai akhir perhitunganya patokan, nilai tampungan kelengasan awal pada bulan januari harus kurang dari 200 pada bulan desember Jika lebih perhitungan tampungan kelengasan di ulang lagi perhitungan ada kesalahan maka perlu di ulang mulai bulan januari lagi dengan mengambil nilai tampungan kelengasan bulan januari = tampungan kelengasan bulan Desember.

Penentuan debit andalan erat hubunganya dengan penerapan statistik dalam hidrologi. Dalam Analisa frekuensi terbagi dua data secara umum yaitu data yang dikelompokkan dan data yang tidak dikelompokan. Debit hasil perhitungan termasuk data yang belum dikelompokkan dan disediakan menurut kejadian. Penentuan probalitas membuatnya dengan cara mengurutkan data dari urutan besar kekecil dengan menghilangkan urutan kejadian. Selanjutnya diurutkan yang dimulai dengan ranking pertama (M=1) untuk data yang paling besar dan seterusnya. Setelahnya bisa dibuatkan kolom plotting dengan menggunakan rumus weibul.

$$P = \frac{m}{N+1}$$
(2.6)

Dimana:

P = Probalitas

m = ranking

N= jumlah data

Debit andalan yang digunakan untuk perencanaan penyediaan air irigasi menggunakan debit andalan 80% keandalan 80% mempunyai arti bahwa debit akan terpenuhi adalah 80% atau kemungkinan debit sungai lebih rendah dari debit andalan 20% (SPI KP-1: 1986).

Tabel 1. Debit rata-rata sungai kiwa

Tahun	Debit Rata-rata Sungai kiwa												
	Jan	Peb	Mar	Apr	Mei	Jun	Jul	Agust	Sept	Okt	Nop	Des	(m³/detik)
2006	106,135	131,632	95,281	95,021	29,033	36,066	11,876	5,938	2,969	1,485	0,742	40,183	46,363
2007	40,595	99,547	120,594	120,047	68,676	56,396	52,574	16,739	8,369	4,185	66,951	100,975	62,971
2008	77,453	59,697	163,003	88,657	30,582	15,291	13,414	5,059	2,529	1,265	39,647	93,845	49,204
2009	57,916	71,829	48,242	60,358	64,403	18,825	9,412	4,706	2,353	1,177	73,550	27,135	36,659
2010	80,555	60,806	158,990	99,020	76,225	32,993	33,823	28,071	47,286	64,802	90,471	81,327	71,197
2011	137,784	64,366	119,246	56,731	67,705	20,632	10,316	5,158	2,579	3,946	12,099	127,451	52,334
2012	94,671	99,156	81,676	66,794	21,709	10,854	9,748	3,640	1,820	0,910	14,444	89,247	41,222
2013	92,621	110,212	91,992	79,855	92,101	36,883	24,678	9,747	4,873	2,437	69,921	111,398	60,560
2014	107,177	87,179	109,094	65,454	112,805	86,386	30,740	14,385	7,192	3,596	12,514	83,018	59,962
2015	133,644	171,830	94,858	149,615	72,996	27,547	13,773	6,887	3,443	1,722	0,000	37,593	59,492
Rata-rata	92,855	95,625	108,298	99,155	63,623	34,187	21,035	10,033	8,341	8,552	38,034	79,217	53,996

Tabel 2. Debit andalan sungai kiwa

	No.	Debit Sungai Asam-Asam (m³ idetik)											
Peluang		Jan	Peb	Mar	Apr	Moi	Jun	Jul	Agust	Sept	□kt	Мор	Des
3,05%	1	131,784	171,830	163,003	149,615	11Z,805	86,386	52,574	28,071	47,286	64,802	30,411	127,451
18,16%	2	133,644	131,632	158,990	120,047	92,1D1	56,396	33,823	16,739	8,369	4,185	73,550	111,39B
27,27%	3	107,177	110,212	120,594	99,020	92,1D1	56,396	33,823	16,739	7,192	3,946	69,921	100,975
36,36%	4	106,135	99,547	119,246	95,021	72,996	36,066	24,678	9,747	4,B73	3,596	66,951	93,845
45.45%	5	94,671	99.156	109,094	88.657	68.676	32.993	13.773	6.887	3.443	2.437	39.647	89.247
54,55%	6	52,621	87,179	55,261	79,655	67,7D5	27,547	13,414	5,938	2,969	1,722	14,444	83,018
63,B4%	7	80,555	71,829	94,858	BB,794	64,4D3	20,632	11,B76	5,158	2,579	1,485	12,514	B1,327
72,73%	8	77,453	64,366	91,992	65,454	30,5B2	18,825	1D,316	5,059	2,529	1,265	12,099	40,183
81,82%	3	57,916	60,806	81,575	60,358	Z9,D33	15, <i>2</i> 91	3,748	4,706	2,353	1,117	0,742	31,593
90,91%	1D	40,595	59,697	48,242	56,731	21,709	10,854	9,412	3,640	1,820	0,910	0,000	27,135
Debit Andalan 8	30% (m²ldet	61,823	B1,518	63,739	61,377	29,343	15,398	3,862	4,777	2,388	1,194	3,014	38,111
Debit Andalan 85% (m³ldet		51,854	60,418	69,374	59,088	26,470	13,73B	9,631	4,333	2,166	1,083	0,482	33,933
Debit Andalan 90% (m³ldet		42,327	59,BD8	51,586	57,094	22,441	11,298	9,446	3,746	1,873	0,937	0,074	2B,1B1
Debit Andalan S	35% (m³ldet	32,800	59,198	33,197	55,100	18,413	8,858	9,261	0,000	0,000	0,000	0,000	22,429
Debit Andalan S	39% (m³ldet	25,179	58,710	1B,486	53,504	15,190	6,906	9,113	0,000	0.000	0.000	0,000	17.B27

III. HASIL DAN PEMBAHASAN

Temperatur rata-rata di Kabupaten Banjar tertinggi adalah 29,07°C jatuh pada bulan Mei dan rata-rata terendah adalah pada bulan Juli yaitu 27,75 °C.

Penyinaran Matahari rata-rata di Kabupaten Banjar tertinggi adalah 61,81% jatuh pada bulan Agustus dan rata-rata terendah adalah pada bulan Januari yaitu 24,11%.

Kecepatan angin di Kabupaten Banjar rata-rata 3,94 km/hari adalah yang tertinggi pada bulan November sedangkan kecepatan rata-rata terendah pada bulan Mei yaitu 0,48 km/hari.

Kelembaban Relatif Kabupaten Banjar rata-rata tertinggi adalah bulan Desember yaitu 85,54 % sedangkan yang terendah pada bulan September yaitu 78,63 %.

Penguapan rata-rata di Kabupaten Banjar 4,45mm. Penguapan rata-rata tertinggi 5,51mm pada bulan September dan rata-rata penguapan terendah pada bulan Desember yaitu 3,64mm.

Curah hujan rata-rata di Kabupaten Banjar adalah 99,88 mm. Curah hujan rata-rata tertinggi pada bulan Desember 203,73 mm. Sedangkan curah hujan terendah pada bulan Agustus 28,13 mm.

Evapotranspirasi rata-rata adalah 3,940 mm/hari. Evapotranspirasi tertinggi adalah 4,934 mm/hari pada bulan Agustus. Sedangkan evapotranspirasi terendah yaitu 3,028 mm/hari pada bulan Mei.

Curah hujan efektif adalah 98,65 mm/hari sedangkan curah hujan padi tertinggi yaitu 405,0 mm/hari pada bulan Desember. Curah hujan efektif terendah yaitu 1,2 mm/hari pada bulan Agustus.

Hasil Perhitungan kebutuhan air di desa tambak baru kabupaten banjar, kebutuhan air tertinggi dengan awal tanam bulan juni II (16 juni) berjumlah dengan rata-rata 0,442 m³/detik.

Dari Tabel 2, didapat data debit dengan metode Nreca debit andalan 80% debit terbesar terjadi pada bulan Maret 83,73 m³/detik sedangkan yang terendah pada bulan Oktober yaitu 1,194 m³/detik.

Karena ketersediaan air masih banyak untuk memenuhi kebutuhan air yang ada di sekitar polder yang awalnya luas tanam hanya 638 Ha, maka masih bisa diperluas menjadi 845 Ha.

IV. KESIMPULAN

Kesimpulan

Ketersediaan air yang ada di sekitar Das Polder liang yang ada di daerah Desa Tambak Baru Kecamatan Martapura Kabupaten Banjar rata-rata 31,095m³/detik.

Kebutuhan air pada polder liang mencukupi lahan pertanian di polder liang pada awal tanam bulan Juni kedua dengan rata-rata 5,384 m³/detik.

Luas lahan pertanian yang tercatat sekarang 638 Ha dan seharusnya bisa diperluas menjadi 845 Ha karena ketersedian air masih memadai untuk memenuhi kebutuhan lahan di polder tersebut.

Saran

Dari hasil Analisa ketersedian air dan kebutuhan masih cukup banyak maka seharusnya polder yang tercatat saat ini luas lahan 638 Ha bisa diperluas lahan tersebut untuk tanaman padi sekitar 845 Ha karena kebutuhan air di polder masih cukup memadai dengan syarat pintu air yang mengelilingi polder harus lebih di perhatikan agar air yang keluar masuk polder bisa memenuhi kebutuhan air untuk tanaman. Untuk penelitin selanjutnya bisa ditambahkan data kontur dan data pasang surut air agar penelitian bisa lebih baik lagi.

DAFTAR PUSTAKA

- Anonim (1999), Panduan Perencanaan bendungan Urugan volume II (AnalisaHidrologi), Dapertemen Pekrjaan Umum, Direktorat Bina Teknik, IrigationEngineering Service Senter Bersama Japan Internasional Cooperation Agency, Deijen Pengairan, Jakarta.
- Direktorat Jenderal Sumber Daya Air. 2003. KP-01 Kebutuhan Air pada Sawah untuk Padi. Kementerian Pekerjaan Umum.
- Suyon, Sosodarsono. 2003. *Hidrologi Untuk Pengairan*. Jakarta. Paradny Paramita.
- Soemarto. 1995. Penerapan Metoda Nreca dan Metoda Mock Untuk Menghitung Debit Andalan. Jakarta.
- Triatmodjo, Bambang. 2008. *Hidrologi Terapan*. Bata Offset. Yogyakarta.
- Wikipedia. 2020. Sejarah Kebupaten Banjar. Kalimantan Selatan. Diunduh pada Tanggal 1 Agustus2020 (http://id.m.wikipedia.org/wiki/Kabupaten_Banja)
- Herliyani F.A, Fakhrurrazi, dan Adriani Muhlis (2014), Analisis Keseimbangan Air Daerah Aliran Sungai Tabanio Kabupaten Tanah Laut, *Jurnal Intekna*, *No.2*, 166-171.