Classification of Student Graduation Using Learning Vector Quantization Algorithm

Main Article Content

Dwi Kartini Radityo Adi Nugroho Mohammad Reza Faisal

Abstract

Computer Science Study Program FMIPA ULM graduates dozens of undergraduate students every year. One of the assessment criteria for the accreditation of the study program is the assessment of the duration of the study of students who graduated on time. In this research will be done classification of graduation based on the status of student study year = timely and study length 4.5 years = not on time. Classification of students passing graduation based on IP semester I, Semester II, Semester III and Semester IV that have passed. If a system can classify students' graduation as a predictor of the duration of a student study, it is expected to be a recommendation for the Academic Advisors lecturers giving advice to students who are detected in the timely graduation possibilities so that Drop Out (DO) prevention measures may be taken earlier. Accuracy results are in accordance with the test data of 70% by using α = 0.5, decrement alfa 0.35 and maxepoch = 500.

Downloads

Download data is not yet available.

Article Details

How to Cite
KARTINI, Dwi; NUGROHO, Radityo Adi; FAISAL, Mohammad Reza. Classification of Student Graduation Using Learning Vector Quantization Algorithm. POSITIF : Jurnal Sistem dan Teknologi Informasi, [S.l.], v. 3, n. 2, p. 93 - 98, dec. 2017. ISSN 2460-9552. Available at: <http://ejurnal.poliban.ac.id/index.php/Positif/article/view/420>. Date accessed: 20 nov. 2019. doi: https://doi.org/10.31961/positif.v3i2.420.
Section
Articles

References

Fausset, L.V. (1994). Fundamentals of Neural Network: Architecture, algorithms, and applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Hermawan, Arief. (2006). Jaringan Saraf Tiruan Teori dan Aplikasi. Yogyakarta : Andi Offset.

Hidayati, N. & Warsito, B. (2010). Prediksi Terjangkitnya Penyakit Jantung Dengan Metode Learning Vector Quantization. Media Statistika, 3 (1). pp. 21-30. ISSN 1979-3693.

Kusumawati, D., Winarno, W. W., & Arief, M. R. (2015). Prediksi Kelulusan Mahasiswa Menggunakan Metode Neural Network dan Particle Swarm Optimization. SEMNASTEKNOMEDIA ONLINE, 3(1), 3-8.

Affendey, L. S., Paris, I. H. M., Mustapha, N., Sulaiman, M. N., & Muda, Z. (2010). Ranking of influencing factors in predicting students’ academic performance. Information Technology Journal, 9(4), 832-837.

Rahmani, B., & Aprilianto, H. (2014). Early Model of Student's Graduation Prediction Based on Neural Network. TELKOMNIKA (Telecommunication Computing Electronics and Control), 12(2), 465-474.

Siang, J. J., Tiruan, J. S., & menggunakan MATLAB, P. (2004). Yogyakarta. Andi Offset.

Ranadhi, D., Indarto, W., & Hidayat, T. (2006). Implementasi Learning Vector Quantization (LVQ) untuk Pengenal Pola Sidik Jari pada Sistem Informasi Narapidana LP Wirogunan. Media Informatika, 4(1).